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Abstract: The classical dynamic Allan variance(DAVAR) can describe the non鄄stationary of random error
of fiber optical gyroscope(FOG) effectively. However, the method has defects such as poor confidence on
the estimation of long鄄term -values due to the reduced amount of data captured by the fixed length
windows. Besides, the method is difficult to make a satisfactory tradeoff between dynamic tracking
capabilities and variance reduction. An improved DAVAR algorithm based on kurtosis and data extension
was proposed to solve the problems. Firstly, the kurtosis of data inside the windows was introduced as
characterization of signal忆 s instantaneous non鄄stationary, and the window length function which was
utilized to truncate the signal was built by taken kurtosis as variables, the function can make window
length change with the non鄄stationary of the signal automatically. Secondly, the random error of FOG
was truncated with the function. Then the data in the windows were extended by the total variance
method to improve the confidence. At last the Allan variance of extended data was computed and
arranged by three鄄dimensional. The measured data of FOG start鄄up signal was analyzed with the proposed
algorithm and DAVAR. The results show that the proposed algorithm is an effective way to characterize
non鄄stationary of FOG and can also obtain a lower estimation error at long鄄term -values.
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动态 Allan 方差改进算法及其在 FOG 启动信号分析中的应用

汪立新，朱战辉，李 瑞

(西安市高科技研究所，陕西 西安 710025)

摘 要院 针对动态 Allan 方差运用固定长度的分析窗截取信号导致样本数据量减少，长相关时间下方

差估计值置信度降低，首先，针对动态信号跟踪能力与置信度的提高不能兼顾的问题提出了一种改进

算法。引入截断窗内峭度值作为表征信号短时稳定度的参数，并建立以峭度为变量的窗宽函数，该函

数可以使截断窗长随着信号的平稳程度自动变化。其次，再用窗宽自适应的滑动窗分段截取陀螺随机

误差，分别对每个截断窗内样本进行总方差计算以增加方差估计的自由度。最后，计算延伸后样本的

Allan 方差，并将其以三维形式排列出来。结果表明：应用该方法对光纤陀螺启动信号进行分析，该算

法既能更有效地跟踪信号的非平稳变化，又能大幅降低长相关时间下方差的估计误差。

关键词院 光纤陀螺； 启动信号； 动态 Allan 方差； 总方差； 峭度

收稿日期院2015-11-05曰 修订日期院2015-12-10
基金项目院国家自然科学基金(61503390)

作者简介院汪立新(1966-)袁男袁教授袁博士生导师袁主要从事惯性技术及测试方面的研究遥 Email:wanglixin066@sina.cn

通讯作者院朱战辉(1978-)袁男袁工程师袁博士袁主要从事惯性技术及测试尧数字信号处理方面的研究遥 Email:zzhhit@sina.com

0726004-1

第 45 卷第 7 期 红外与激光工程 2016 年 7 月

Vol.45 No.7 Infrared and Laser Engineering Jul. 2016



红外与激光工程

第 7 期 www.irla.cn 第 45 卷

0726004-2

0 Introductions

The output signal of FOG changes with time due
to several factors in the start鄄up phase, such as
temperature, Shupe effect, humidity and mechanical
vibrations, it demonstrates the typical non鄄stationary
characteristic. There is a certain bias drift error in the
working process of FOG, especially in the start鄄up
phase. Characterizing and identifying the dynamic
characteristics of various error sources play an important
role to compensate for the drift of FOG[1]. The Allan
variance is a standard quantity for the characterization
of gyro, recommended by the IEEE standard.
However, the Allan variance assumes the random
error is stationary, and the method only can be used
for analyzing statistical characteristics of FOG[2].

Recent year, dynamic Allan variance (DAVAR)
which was used to analyze non鄄stationary of atom
clock's frequency is introduced to analyze random
error of inertial sensor by some scholars [ 3 ] . Zhang
Chunxi and Gu Shanshan introduced DAVAR to
analyze dynamic characteristics of FOG, and the
time-varying character of gyro output in vibration and
temperature test is described effectively [4-5]. However,
DAVAR has a poor confidence on the estimate, due
to the reduced amount of data captured by the
analysis windows in the computation of the Allan
variance, especially at the middle鄄term and long鄄term
-values. Besides, the truncated window has poor

flexibility resulting from the fixed length [6]. Thus, an
improvement DAVAR method is proposed, as can
make the length of analysis windows change with the
signal stationary automatically and reduce the
estimation variance of the Allan variance at the long鄄
term -values. The new method is proved validity by
performing signal analysis on FOG忆 s start鄄up output
and simulation signal.

1 Dynamic Allan variance and kurtosis

The DAVAR is a sliding version of the classical

Allan variance, which can track and describe the non鄄
stationary of signal. According to the definition of
DAVAR, the original signal is truncated into data
samples by a fixed length window, and the evaluation
of the Allan variance in every sample is repeated,
then these values are arranged in chronological order
and observation interval ( ) order. At last the values
are plotted in a single 3 -D graph to represent
dynamic change process of the signal.

Kurtosis is a numerical statistics which can
reflect the signal distribution characteristic, and it is
particularly sensitive to amplitude and standard
deviation changes in the signal, it is defined as

K=

肄

-肄乙 [x(t)-x軃]4p(x)dx
4 (1)

where x(t) is instantaneous amplitude; x軃represents average
amplitude; p (x) represents probability density ; is
standard deviation.

As the 4th -order central moment statistics,
kurtosis can reflect the non鄄stationary of the signal.
When the gyro is working in a stable condition, its
output is close to normal distribution, and the kurtosis
is relatively stable; when mutation occurs in the
output of FOG, signal deviate from Gauss distribution,
the kurtosis values are greater than the values in
stable conditions. Thus, the kurtosis can represent the
non鄄stationary of signal to some extent.

2 Ways to increase confidence of
estimation

2.1 Total variance method
The con fidence in the estimate of the Allan

variance depends on the number of independent cluster
time can be divided. The number is proportionate to
the length of windows which are used to truncate
original signal by DAVAR. However, once the length
of windows is determined, the number of data inside
the window will not be changed.

Fortunately, many methods were developed to
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increase the confidence of limited data on the estimate
of the Allan variance over the last few years, such as
total variance[7], overlapping Allan variance[8], theoretical
variance #1 and Th俸oH variance[9-10]. An effective way
to get around the small鄄sample problem is to apply a
two鄄sided invert mirror mapping method to obtain a
new virtual time series, total Allan variance is just
based on this approach. The estimation of the total
deviation and the Allan deviation for the same data
series is shown in Fig.1. The total variance is less
fluctuation than Allan variance at long鄄term -value.

Fig.1 Log鄄log plot of Allan and total variance

A time鄄residual data xi(i=1,2,噎,Nx) can be extended
to a new, longer virtual sequence xn* by mirror
mapping reflection as follows:

x*
1-j =2x1-x1+j (j=1,噎,Nx-2)

x*
i =xi (i=1,2,噎,Nx)

x*
N+j =2xN-xN-j (j=1,噎,Nx-2)

扇

墒

设设设设设设设缮设设设设设设设

(2)

The result of this extension is a virtual data
sequence xn*,3-Nx臆n臆2Nx-2.
2.2 Confidence in the estimation of total variance

Confidence, expressed as the equivalent degrees
of freedom (EDF), is analysis in Reference [10] with
different algorithms for computations of frequency
stability at =T/2. The conclusion is that the edf of
Th俸oH variance is larger than total Allan variance,
and the total Allan variance is larger than overlapping
Allan variance. But the Th俸oH variance has an
extremely heavy computation burden, and it is not
suitable for real鄄time dynamic algorithm. So we
choose the total variance to estimate the variance of

the data in the analysis window instead of the Allan
variance. The total variance can further increase the
estimation accuracy of FOG random error at long鄄term
子 -value than overlapping Allan variance, which has
also proved in reference[8].

3 Improved dynamic Allan variance

3.1 Establishment of adaptive window function
When we analyze the output signal of gyro, if

the gyroscope is behaving in a stationary way,
obviously long window can captures a larger amount
of data and increase the number of samples in the
computation of the Allan variance, consequently the
confidence in the estimate of the DAVAR could be
highly increased. Nevertheless, if long window is still
used when the gyroscope is behaving in a non鄄
stationary state, the non鄄stationary in the signal will
not be tracked accurately and there is always an
advance and delay before and after it really happens.
Hence, short window will get a better choice to track
fast variations in the non鄄stationary time series.

The instantaneous non鄄stationary of the signal is
represented by the kurtosis value computed with data
in truncation windows in the new algorithm. We use
the current kurtosis values to determine subsequent
truncation window length in our improved algorithm.
The window length function proposed by us is

L(t+1)=
1 L(t)约 1

L(t)-驻L*(K(t)-k) 1臆L(t)臆 2

2 L(t)跃 2

扇

墒

设设设设设缮设设设设设

(3)

Where L(t) is the window length of time t; 1 and 2

is constant, 2 跃 1, they are the upper and lower
boundary for the adaptive window length. The values
rest with the length of the signal to be analyzed and
confidence level we expect. The threshold k is
determined by the calculation of the kurtosis under
stationary working state. 驻L is the step of window
length increase or decrease each time. It can be
summarized that if signal is nonstationary in time t,
the value of K(t) will be greater than k, and the window
length L(t+1) will become shorter step by step. On the
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contrary, If the signal tends to be stationary, the
value of K(t) will be less than k, and the window length
L(t+1) will become large gradually until to the upper
boundary.
3.2 K-DTVAR algorithm design

The proposed algorithm is an improved DAVAR
method based on kurtosis adaptive sliding window and
the total variance, K-DTVAR (Kurtosis鄄Dynamic Total
Variance) for short. We introduce the continuous鄄time
formulation of the K -DTVAR by starting from the
signal x(t) that represents the gyro signal. In Fig.2 , we
give a flow chart of the K-DAVAR algorithm.

Fig.2 Flow chart of the K-DTVAR

We choose t1 as a starting point of calculate and
truncate the signal x ( t ) with a rectangular window of
length L(t1) which center is t1. We use support variable
t忆 to describe the elapsing time inside the window.
The interval is

t1-L(t1)/2臆t忆臆t1+L(t1)/2 (4)
The truncated signal can be defined as

yT(t1,t忆)=y(t忆)PL(t1-t忆) (5)
PL(t1-t忆) is the rectangular window of length L(t1).

PL(t)=
1,|t|臆L/2
0,elsewhere嗓 (6)

Now, an extended virtual sequence yT*(t1,t忆) can be
produced by performing invert mirror method on yT(t1,t忆),
in other words, Equation(2) is applied to yT(t1,t忆 ). At

the same time, the kurtosis K(t1) of yT(t1,t忆) is computed
and window length L (t2) can be obtained by
substituting in Equation (3).

We convolve yT*(t1,t忆) with the Allan window h (t忆)
to build process of increment 驻(t1,t忆, ),

驻(t1,t忆, )=
肄

-肄乙 h (t忆-t义)yT*(t1,t义)dt义 (7)

The range of the variable t忆 is t1-(L(t1)/2- )臆t忆
臆t1 +(L (t1)/2 - ) 0臆 臆 max, the bound max is the
maximum observation interval; it can only reach N 0/2
in the Allan variance estimation, but it can reach (N-
4) 0 in the total variance. We square the increment
and average in time with respect to t忆.

2
y (t1, )= 1

2 掖驻2(t1,t忆, )业= 1
2(T-2 )

t+L(t1)/2-

t-L(t2)/2+乙 驻2(t1,t忆, )dt忆(8)

We define the dynamic total variance as the
ensemble average (expectation value) of Eq.(9).

2
y (t1, )= 1

2 E[掖驻2(t1,t忆, )业] (9)

Some main noise coefficients A(t1)1噎A(t1)5 can be
extracted and confirmed by fitting the Allan variance
curve with the least squares method.

2(t1, )=
2

i=-2
移A(t1) i子i (10)

We choose new epoch t2 as center of window to
truncate signal x(t), then repeat the calculation process
ahead, By analogy, the collection of dynamic total
Allan deviation related to the different epochs tn and
the different observation intervals , gives a measure
of the FOG stochastic error of x(t).

y(t1, ), y(t2, ) 噎 y(tn, ) (11)

4 Simulation results

In this section, we apply the K-DTVAR and the
DAVAR to the simulation process x(t) to compare their
performance in the analysis of non鄄stationary signal.
x (t) is an uncorrelated and zero mean white Gaussian
phase noise. Sampling time is 1 s, and time length is
6 000 s. Before 1 000 and after 3 000, =1, between
1 000 and 3 000, =2, the 1 000 and 3 000 is the point
where the mutation occurs. Figure 3 shows the simulated



红外与激光工程

第 7 期 www.irla.cn 第 45 卷

0726004-5

data x(t). The date was analysis by K-DTVAR, and
the result was presented in Fig.4.

Fig.3 Dynamic white Gaussian model

Fig.4 K-DTVAR analysis of simulation data

In Fig.5, we can observe that the length of
truncation window decrease gradually when the
mutation occurs and instantaneous kurtosis becomes
large at 1 000 and 3 000 sampling points.

Fig.5 Change process of kurtosis and window length

The bias instability (B) and rate random walk (N)
are two important random error sources of FOG.
Dynamic tracking capabilities of K -DTVAR and
DAVAR will be compared through the identification
and analysis for these two noise coefficients. The

analysis results are given in Fig.6 and Fig.7, for
windows of N =401 samples and N =801 samples by
the DAVAR, for adaptive window which upper and
lower boundary are 801 and 401 by the K-DTVAR.

Fig.6 K-DTVAR and DAVAR analysis of rate random walk

Fig.7 K-DTVAR and DAVAR analysis of bias instability

As can be seen, the K-DTVAR tracks the non鄄
stationary more effectively. In the near 1 000 and 3 000,
the transition from one region to another is very
sharp袁but there is instead a larger transition region
from one situation to the other by DAVAR, and it is
hard to point out the exact position where mutation
occurred, especially for windows of N =801. Besides,
the fluctuation of the noise coefficient is very large
for windows of N =401 samples. That also makes it
hard to accurately locate the mutation points. The
result is listed in Tab.1.

It seems that the dynamic tracking capability of
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N
Start鄄point
End鄄point

Reference
value
1 000
3 000

DAVAR
401 K-DTVAR DAVAR

801
800 820 600
3 200 3 190 3 400

B
Start鄄point 1 000 710 790 -
End鄄point 3 000 3 400 3 180 -

Tab.1 Comparison of K-DAVAR and DAVAR
in the dynamic tracking ability

Notation: *represent the point where can忆t be accurate positioning.

K-DTVAR is not good enough as expected. Even it
is much better than the DAVAR. But it is interesting
that the positioning error of K -DAVAR almost as
zero if it is compensated by half of the window length
(200).

5 Analysis for FOG start鄄up signal

The output of FOG is a typical non鄄stationary
time鄄varying sequence in start鄄up phase. To further
demonstrate the superiority of K -DTVAR, the K -
DTVAR and the DAVAR are applied to experimental
data of FOG忆 s start鄄up signal respectively. The
sampling period was 0.3 s and acquisition time was
about 1 h. In Fig.8, the original random drift signal of
FOG is shown.

Fig.8 Start鄄up signal of FOG

In Fig.9 and Fig.10, we represent Allan deviation
of the FOG output by K -DTVAR and DAVAR. As
can be viewed, the K-DTVAR analysis figure is more
clear and easy to observe. This is because the K -
DTVAR makes the confidence on the estimate highly
increased, especially at long鄄term -values. On the
contrary, the estimation of DAVAR tends to fluctuate

dramatically at long鄄term -values due to a smaller
amount of data inside the window.

Fig.9 K-DTVAR analysis result of FOG忆s start鄄up signal

Fig.10 DAVAR analysis result of FOG忆s start鄄up signal

In addition, it can be seen by K -DTVAR that
the estimate is relatively large in long鄄term -values
at the beginning of FOG忆s start鄄up phase, and which
is gradually decreasing with the output of the gyro
tending to be stationary, but the estimate remains the
same as short鄄term -values. However, the dynamic
change is almost invisible in DAVAR analysis figure.

In Fig.11, we can observe that the length of
truncation window become long gradually with the
changes of kurtosis. That means we realized to track

Fig.11 Change process of kurtosis, windows length and -values
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Factors Q/滋rad
Ref value 0.064 2

K-DTVAR 0.073 6

N/(毅)窑h-1/2

0.010 3

0.010 3

B/(毅)窑h-1 K/(毅)窑h-3/2 R/(毅)窑h-2

0.118 5 1.108 3 3.599 8

0.133 8 1.089 1 3.068 8

DAVAR 401 0.099 7 0.010 7 0.243 2 4.155 9 27.48 1

DAVAR1201 0.073 1 0.010 4 0.137 9 1.537 1 5.627 6

changes using short window in a non鄄stationary
situation and a long window in a stationary situation.

In Fig.12, we show the change process of noise
coefficients by fitting the Allan variance curve using
the least squares method. It can be summarized that
the A/D and D/A converters have good stability
because the quantization noise (Q) remains unchanged
in FOG start鄄up phase. The angle random walk (N)
mainly comes from various optical components. N
remaining stable means the optical components have a
good stability. The bias instability (B) is caused mainly
by environmental disturbance and residual dissimilarity
of FOG, representing the fluctuation of the FOG bias
drift. We can judge that the output has been
influenced by environment, temperature (shupe effect).
The rate random walk (R) is an important parameter for
characterization FOG drift of the trend term, it
changes in FOG start鄄up phase means the intensity of
the light source or the front or rear amplifier of the
detector has a one鄄way slow change.

Fig.12 Change process of noise coefficients

When the FOG is behaving in a stationary way
gradually, the output of FOG tends to be stable. We
can take the coefficients identified by Allan variance
from all of data as excepted value (reference value).

And the time-varying curves of the noise coefficients
by DAVAR and K -DAVAR should fluctuate on the
baseline of the reference value[11].

Here, we compare the estimating accuracy of the
two algorithms. In the stationary process, that is, the
6 000 to the 9 780 points, the noise coefficients are
identified by K-DTVAR and DAVAR with the same
length window of N =1 201 samples. At the same
time, the estimate of the Allan variance is computed
from N=3 780 samples as the standard value of high
confidence.

The change process of bias instability identified
by different methods is shown in Fig.13, and the
reference value 0.118 5 is the fitting result by Allan
variance with 3 780 samples. Fitting results of other
coefficients are given in Tab.2, values which obtained
by K -DTVAR and DAVAR are average values of
time鄄varying curves in a stationary process.

Fig.13 Change process of bias instability in stationary situation

Tab.2 Noise coefficients of FOG start鄄up signal

It can be seen that the noise coefficients
identified by K -DTVAR are closer to the reference
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value than DAVAR. With the increase of value, the
advantages of K -DTVAR are becoming more and
more obvious.

6 Conclusions

For traditional DAVAR, we often have to face
the choice between two opposite needs, that is, to
have a good confidence or to track variation quickly,
and it is difficult to have a good tradeoff with fixed
length window provided by DAVAR. Therefore we
propose the adaptive sliding window based on kurtosis
to solve the problem successfully. Furthermore, the
confidence in the estimate of the K -DAVAR is
highly increased through the application of the total
variance, especially at the long鄄term -value. The
proposed K-DTVAR is applied to the characterization
and identification of FOG stochastic error signal. The
results show: Both signal tracking capability and
confidence on the estimate have greatly increased.

The proposed K-DTVAR method can be utilized
to extract stochastic error coefficients of FOG in real
time. Compared with the traditional compensation
method based on the startup drift model which is built
by historical date, the application of real鄄time bias
instability to compensate for startup drift of FOG has
more obvious advantages.
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